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ABSTRAS1

This paper attempts to provide an Introduction

for statisticians to the version of optima l experimental

des ign theory for parame ter es ti ma ti on In regress ion
models that Is appropriate to dynamic systems. The

• paper consists of three main parts: first, a glossary

of some terminology in control engineering and an intro-

duction to the main aspects of dynamic systems ; second ,

a summary of the principa l results and patterns in

• optima l experimental design theory ; and third, the ways

In which the latter carry over to dynamic models. These

applications are split roughly Into those Involving

choice of 4nput functions and those In wh i ch sampling

times are selected.

KEY WORDS: dynami c systems ; input signal synthesis;

optima l experimental design ; parameter

estimation.
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1. INTRODUCTION

The main objective of this work Is to bring to a statistical

readership the recent activity among control engineers in the field

• of experimental design . Principal ly, we mean to catalogue work that

paralle ls so-called optima l experimenta l design in which important

• references are Klefe r (1959, 1974), Kiefe r and Wolfowltz (1960),

Fedoroy (1972). WhIttle (1973), and SIlvey (1974). It Is to be hoped

tha t stat i s ti c i ans w il l become more fam i li ar w ith and more Intereste d

In dynamic problems , a hope that has been expressed before In Wisha rt

(1969). Young (1975), Wynn (1974), and Harrison and Stevens (1976).

in the engineering literature there are useful surveys by Mehra

(1974b) and Goodwin and Payne (1977), but it Is hoped that a ‘trans-

lation ” might be helpful to a statistical audience.

The dictionary for the translation Is provided in Section 2. In

Section 3 the main features of “static ” optimal design theory are laid

out and In Sections 4 and 5 generalizations of these to dynamic sys-

tams are described. Section 6 contaIns a brief conclusion .

2. SOME TERMINOLOGY~
A major discouragement to statisticians who approach the engin-

eering literature Is the “wealth ” of jargon. There are both new con-

cepts and alternati ve terms for familiar Ideas. Many of these are

• discussed at length in the survey by Wl shart (1969) of the determin—

Istic optimal control problem , and here we give but a brief introduc-

tion to the new language , with special regard to the problems related

to experimental designs.

• Since “time ” is an essential feature of dynamic systems , we w ill

-~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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be concerned with stochastic processes , which may be described in

discrete- or continuous -time and which may be uni- or multi—variate ,

Stationary or nonstationary .

The system Itself, which the statistician would be more likely

to call the model , generally Involves processes of three types:

inputs , outputs , and noise. (We shall see late r that a fourth cate-

gory , the state, Is often used , but it arises less directly and we

delay its description for the time being.) The Inputs , or controls,

are generally open to choice , the outputs may be observed by the ex-

per imen ter , and the noise Is random disturbance , wh i ch may be obser-

vation error or a contribution to the dynami c evolution of the pro-

• cess.

A further component of the system is a set of parameters , con-

ceptually familiar to the statistician.

As an exercise In the terminology , let us consider the following

simple model.

y(t) — a 1(t)y (t-1)— a2(t)y(t—2) — b 1(t)u(t)+e(t), t— 1,2,... (1)

with some Initia l conditions such as y(0) ,‘(—l ) • 0. {y(t)} are

the outputs, {u(t )J are the Inputs , {e(t)} the noise and the para-

meters are {a1(t), a2(t), b 1(t)). along with the statistical descrip-

tion of the noise process , which almost always has zero means . In

rlos t discrete-time problems the noise Is assume d to be normally dis-

tributed (Gaussian to the engineers ) and If the {e(t)} are uncorrela-

ted and Identically distributed , the noise Is said to be white because

of its consequently flat spectra l density . Often

a1(t ) a 1 , for all t,

and similarly for the (a2(t), b 1(t)). The system is then called

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ .. 1
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time-invariant , as opposed to time -va rying and (1) becomes

y(t) — a 1y(t— 1)— a2y(t-2) 
• b~u( t ) + e( t ) , t • 1,2,... . (2)

Let us suppose for the mome nt that the input and output processes

are scalars. Then the control engineers would describe (2) as the

input -output representation of a linear , time -Invariant , discrete-ti me ,

stochastic , single — input-sin gl e-out put system. The antonyms of all

the adjectives are obvIous. By “linear ” is meant linearity in the

processes, not the parameters , although , apar t from the parame ters In
the noise process , we do have this sort of linearity as well. If the

{e(t)) are normally identically and independently distributed with

zero me ans , we mi ght augment the description by adding that the system

Is “dri ven by white Gaussian noise. ”

Of course , for the above example the familiar time-series lang-

uage of Box and Jenkins (1976) is also used , and the concept of

stationarlty is also of conce rn to the engineers .

The recursive nature of (2) leads to the possibi lity of con-

structing a generating function version. Thus if we denote by

.Y(z) — £ z1y(i)
1— 0 -

the z-transform of the output process , and so on , and if we take

• t:~O) = 0, (2) can be written

A (z )  Y ( z )  = B(z ) U (z )  + E(z)
where

A(z )  = a0 - a1z - a2z
2

and
8(z )  b 1 .

hIIk .A - ---— -- - - 
~~~~~~~
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Go ing a sta ge furt her , we have , If A (z ) 1 exists ,

Y(z)  • H1 (z ) U(z)  + H2(z ) E(z )

where H1(z) — A( z )~~B(z ) and H2(z ) — A(z )~~ are cal led the trans-

fer functions from the input and the noise, respective ly, to the Out-

put. For more discussion of this formulation , see Wlshart (1969) and

Cadzow (1973).

A further important concept Is that of state-sp~ce model s, which
revolutionized control theory methodology . The principal objective ,

In discrete-time systems , is to wri te the model description as a set

of fi rst—order recursions on the so-called state variable(s), coupled

with an equation relating the observation or output at time t with

the state variable(s) and input variable(s) at time t. We should

therefore have , for a linear time-invariant system , a model of the

form
• x(t+1) Gx(t) + Hu(t) + Fe(t)

• (3)
y(t) Bx(t) + Cu(t) + Dn (t) , t — 1,2,... J

w here ~(t) denotes the vector of state variables at time t and

• fe(t)} and {n(t)} are noise processes.

Systems can have both an input-output and a state-space repre-

senta tion. For (2), if we define two state variables in

x1(t) • y(t—1)

• x2(t) y(t-2) ,

then we can replace (2) by (3) with

a1 a2 b 1 (ii 
~ 

a1
G 1 0 5 H 0 5 F a ~~o J . B — a 2 5 C * ( b 1).

D (1) and n(t) • e(t), t — 1,2,..., along wi th the initial
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• condition L(l) 0.

The state-space representat ion is Important for various reasons.

It is easy to develop the model sequentially in the time-do main.

Using Input-output models, the time -domain approach is difficu lt and

frequency-domain or z-transform methods depend on stationarity of the.

system , which is not necessary for the state-space analysis of the

operation of the ~ystem over a finite period of time . Also , nonl inear
problems can be dealt with to some extent by linearization. Finally,

and very importantly from a statistical po int of view , if the noise-

• processes are Gaussian and white (by preliminary transformation or

pre-whitenin g if necessary ) and If the distribution of ~.(1) is

Gauss ian , then the posterior distribution of x(t), given

y(1),...,y(t-1), Is also Gaussian , with mean ~(t) and covarlance

matri x P(t), say. What is more , these parameters can be computed

recursively from

j(t+1) G~ (t) + Hu( t ) + K ( t ) v ( t )  (4)

y(t) - B~(t) + Cu(t) + E(t)v(t) • 

(5)

P(t+1) — GP(t)G - K(t)KT(t) + FQFT (6)

where K(t), called the gain , is defined by

k(t) — GP( t )BT(BP (t)BT + R).L~2 (7)

and
z(t) — (BP(t)B T + R)~ ’~

2 
.

R a cov{n(t)} and Q — cov { e ( t ) }
Often (4) and (5) are combined by elimination of the so-called

innovat ion process v(t) to give the updated ~(t+1) directly in

terms of ~(t), u(t) and y(t). The innovation process can be

shown to be a sequence of uncorrelated “standard ized” no rma l ran dom

~~~~~~
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variables or vectors ; see Kailath (1968), Frost (1968).

Equations (4), (5) and (6) form the Kalman (-Bucy) filter

(Kalman and Bucy , 1961), which Is reappearing more and more in the

stat ist ical  l iterature (Harrison and Stevens , 1976; O’Hagan , 1978).

In the above they arise very naturally through Bayes Theorem and

they have been derived in severa l other ways : as a recursive least

squares algorithm, by maxim um likelihood , using projection arguments ,

• and by the so-called innovations approach. Stochastic approximation

me thods have also been used in the theory of the Kalman fi lter. The

book by Jazw insk ii (1970, Chapter 7) Illustrates some of the ap-

proaches; see also Wil lems (1978).

If the system is stationary and the “steady-state ” equilibrium

has been reached, representations (4) and (5) have the interesting

feature that , because the noise process {v(t)} is the same in both ,

they can be replaced by an input -ou tput model described by the

z-transform equation

Y ( z )  a (B(z’
~ I- G) 1H + C~U(z) + {B(z~~I— G)~~K + E} v ( Z )  . (8)

The steady-state gain K is computed by suppressing the time

arguments In (6) and (7) and eliminating the resulting P .

Perhaps this Is the point to ment ion that linear systems theory

and Kalman filtering metho ds extend to more general situations. Con-

tinuous time processes are an obvious exampl e, for which the equa-

tion governing the change of state will be a first order diffe ren-

tial equation. An even more general set-up for which the Kalman the-

ory carries over is that involving so-called distributed -parameter

systems . Here the state is a function x (t,w) of two variables ,

where ~, can take uncountab ly many values. In an application it

k ~~~~~ —‘.-- —— -- • —
- L_ .
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mi ght represent spatial variables. In continuous time the model

might take the form

~~~ x (t,t~) = 1. x(t,w) + H(w) u( t , w )  + no i se ,

where L Is a linear operato r involving w-derlvatlves. In con-

trast , the models we have considered so far are so—called l umped-

parameter systems . They correspond to w taking only countably or

finitely many values , so that a separa te set of state var iabl es can

be defined for each w-va lue. O’Hagan (1978) has used models simi lar

to distri buted-parameter systems ; a bibliography of the field is

avai lable in Polls and Goodson (1976).

We return to the l umped -parameter case. The value of j(s) is

-a natural point estimate of x (s), allowing fulfillment of the acti-

vity known as state-estimation or state-identification. If we have

avai lable the observations y(1),...,y(t-1), then , accor di ng as

• s ~ t , s — t, or s > t, the problem is one of smooth in,~~ filterin g,

or p~ediction .

Al though we shal l briefly men tion the problem of state-estimation ,

we shal l concentrate more on that of parameter -est imation or System-

IdentifIcation. Our design problem is to select suitable inputs over

a specified period of time , possibly infi nite , to estimate the para-

me ters “as wel l as possibl e ” ; opti mal input signal synthesis. As In

optimal experimental design , some cri terion of ef f ic iency wi l l  be pro-
posed, and there general ly w i l l  be some constraints on the al lowable

inputs. Our problem is dif ferent from that of optimal control. There

the inputs must be chosen to keep the state vector as close as possible

to some trajectory , or to home in on some target . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~- . - . - - -•• •-• - - •~~- •- - • • - - •- . .- .. •~ -•- - --• -•.•.• .- •- ~~
.. • - •~-
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• The extra dimension of time has major consequences as far as

optima l desi gn is concerned. We shal 1 find that the attractive

linear regression theory is rarely applicab le, but we shall have the

possibility of sequential design open to us. A nonsequential design ,

in which the input strategy is specified before the start , coul d be

use d , corresponding to off-line operat ion, but it will seem better

to choose inputs as we go along, on-line , operating an adaptive

system.

• Two final concepts should be ment ioned , contro llabi l lt i  and

observabi l i t y ,  which are c losely l inked wi th the ident i f iabi l i ty  of

parameters . Consider the determin is t ic  model

x (t +1) = Gx( t )  + Hu(t )

y ( t ) — B ! ( t ) .

This system is com pletely observable If , after suff ic ient obser-

vations , the initial state x( 1)  can be exact ly determined. It Is

• comDlete ly control lable i f , after suf f ic ient  sta g es , or choices of

• i n pu t s , it is possible to t rans late the state to any spec i f ied  posi -~
tion. These concepts are important if u(.) and y(.) are vectors ,

and elegant equivalent criteria exist in terms of the m a t r i c e s  G ,

H and B; see Wishart (1969).

From our point of view , the interesting point is that if system

(3) is completely observable and controllable , then the parameters

in the Kalman filter representation (4), (5), (6) are Identi-

fiab le (Kailath , 1968, Appendix 2). Our estimation problems for

the  system therefore revolve around this mode l , or the equivalent

• Input—output re lat ionship (8); see . In part icular , Section 4 D.

~~~~~~~ 
- ~~~~~~~~~~~~~~~~~~~~~ ~~:::~~ :~
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Before a t tack in g the optimal design problem for dynami c systems ,

it is helpful to summarize the main results in “static ” theory .

Helpful textbooks on dynamic systems include Cadzo u (1973), Astrom

(1970), Eykhoff ( 1974), and Jazw i nsk i i  ( 1970).

3. OPTIMAL REGR ES S IO N DESIGN

The stat ic  version of the problem concerns optimal design for

regression models. Al though O’Hagan (1978) uses Bayes ian methods to

develop quite a genera l approach , the usual start ing point involves

observatio ns of a response function which depends on k unknown

parameter s e , and on the site of the observation , u. The point ‘~

is chosen from some compact design space U . The problem is to decide

how to distribute the available observations amongst the possible

sites , or to choose an p~ptima 1 design measure , which specifies the

proportion of the observations to be made at the diffe rent points in

U. The latter problem , which gives “approxim ate ” designs , is theo-

retically mu ch easier than the practically -motivated exact theory .

The meaning of “optimal” will be discussed presently.

The basis of thp theory (see the references in Section 1) was

develope d just for linear regression models with Independent errors ,

but it is helpful to consider a more general set-up. Let us retain

the feature of independent errors , but assume that the response func-

tion is nonlinear , In ~
Let I (O ,u) denote the Fisher information matri x corresponding

to an observation at u. Then , if a design ~ on U is used , the

~verage per observation information matrix is

M(e ,~~) = I (o ,u)~ (du) .

~~~~~~~~ J i_ 
-~~~~~~~ 
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Let • be a real-val ued convex decreasin g function on the set

of k x k nonnegati ve definite symmetric matrices , that is , such

that •(A) ~ •(B)  if the m a t r i x  A - B Is nonnegative definite.

A ~-optimal design will be a design ~~~* such that •(l4( e ,~ ))

is minimized at ~~*, Traditional choices for • Include

• (1) ~~
.) = —lo g det ( • )  (D—o pti ma l i~yj

(ii) •(•) — tr( .) 1 (t race— o pt imal i~ y)

la.t the  Frech~ t directional der iva t ive  of • from A in the

direction of B be denoted by •(A ,8),  and let ~ denote the c lass

of design measures on U.

Then we have the following:

Theorem 1.

For a n y  0,

(i) M( e ,~ ) is symmetric and nonnegative definite,

for any c c — ;

( i i) M(e)  = { M( o ,~ ) : ~ c ~~
} is convex and compact;

(iii) the extreme points of N(e) are each of the form

I(e ,u), f o r  some U; further , for any ~ c

there exists n c , assigning positive weight

to at most ~.k(k + 1) + 1 points in U and such

that M(e ,~ ) M (e ,n). (Essentially Carath~o—

dory ’s Theorem.)

The orem 2. (cf. Whittle , 1973; Whlto , 1973)

For any 0, the following are equivalent:

(1) •(M (o,~ )) is minimized at M(0,~*);

(11) ,(M(o ,t*),M(e ,n)) ~ 0 for all n c — .



If • is different~able at M(e ,t*), we also have the equi-

va lents:

(Iii) ,(M(e ,~*), I(e ,u)) ~ 0 for all u c U ;

(iv) I(M(0,~*), I(e u)) = 0 for any u weighted

positively In ~~~~~~~~ that is , for any u in the

support of ~~* •

(Thus Theorem 1 (iii) imp lies that a •-optima l design can be achieved

with finite support, and Theorem 2 (iv) gives a practical check for

optima lity when • is differentiable.)

Al gorithm 1.

Suppose •(.) is differentiable and that (an) is a sequence

of numbers such that 0 < < 1, ci~ + 0 as n + ~~, and E
fl

Let Un be the u ~ U that minimizes

.{M(8.~~ ). I(e ,n)}

Then , from an initial ~ ~ 
‘ ‘  and subject to certain conditions ,0 -

the sequence of designs generated by

~n+1 
= (1 ~g ) ~~ + a~~(u~)

converges to a •-optimal design . t (u~) denotes the degenerate

design concentrated on u,,.
Boun d.

If •(‘) is diffe rentiable , ~ ~ and c~~ Is an optima l de-

sign , t h en

— 9(M (e ,~*)) ~ — mm •{M(e ,~), I(e,u)) . (9)

This indicates how “close ” ~ Is to the optimum. 
•

j  
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

-
~~~~

•
~
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There are many versions of the equ i valence theorem , Theorem 2,

both in the statistical and In the engineering literaturc~, but the

proofs are almost all essent ially the same as that of Whittle (1973).

which, because of I ts generality , is satisfyingly simple and elegant.

The only radically different approach Is that described for D-optlmal-

ity in terms of Lagrang lan duality theory by Sibson (1972, 1974) and

Silvey and T~tterington (1973).

Algorithm 1 Is only one of many that have been suggested for the

• computat ion of optimal designs; see Fedorov (1972), Wu and Wynn (1978) ,

Wu (1976), St. John and Draper (1975) and Titterington (1977). There

is a fundamental snag to its application , and that is its dependence

on e. It seems that we have to know the true value of 0 in order

to calculate an optimal design for est imat ing it~ In the special case

of li near regress i on (“l i ne ar” In e) it is easy to see t h a t  the

6-dependen ce disappears , so that an optimal design can , in principl e ,

be computed before the experiment starts. In this case MC .) is

proportional to the inverse of the covariance matrix of the least—

squares estimator of e • In the nonl inear case there are three

possible general app~oaches .

(I) Apply Al gorithm 1 with a prior estimate ,

of 0 , and generate an “off-line ” design -
~~~~

as for the linear case.

(ii) Propose some weighting function W(.) on .~e

parame ter space , ~ . This may or may not be a

forma l prior density . Then construct either

= I M(e ,~ )W ( d~ )
ci
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or a new crit er io n

J M (0 . fl4(de)

In both cases equi va l ence theorems can be
- wr i t ten down and proved on the usual way ; see

Mehra (1974b), an d L~uter (1974).

(ill ) Carry out a sequent ial design procedure , or

on-line input synthesis. One such modification

is the following:

Al gorithm 2.

Suppose • is differentiable and that after n observations

have been made , corresponding to a design 
~~~~~~~~ 

an estimate is

available for 0. -

Suppose u,~ minimizes ~~~~~~~~~ I(ö~ .u)}

Take an observa ti on at u,~,, set n = n + 1, update the design

measur e an d repeat the procedure .

Al gorithms of this type have been considered by Fedoro v and

Malyutov (1972), White (1975), and Ford (1976), and in the engineer-

i n g  literature , as will be reported later. Chernoff (1953) discussed

the awkward dependence of optima l designs on 6 and he encouraged

the developmen t of sequential procedure s in Chernoff (1975).

Convergence of these algorithms is very hard to prove . It would

be plausible if the sequence were consistent , but this itself

is difficult because of the compli cated statistical properties of, say,
• the sequence of maximum likelihood estimators of 0; see Whi te (1975),
• Ford (1976), and Goodwin and Payne (1977, p. 115). Al gorIthm 2 does ,

• 
— -- - •3_ - •- — — —:~ ~~ 

— —--- --
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however , seem to be a workable and helpful way of deal ing with the

problem of nonlinearity . Admittedly, It is only a “one— s tep— ahead”

procedure , but more sophisticated methods incur very heavy computa-

tions. This is evident in the Bayesian approach of O’Hagan ~1978),

and is one feature that merits further research.

This concludes a brief summary of the maj or results in optimal

experimental design . We only mention the Im portant topics of exact

designs , designs for special purposes such as model choice , and the

prob lems that arise with designs with singular information matri ces ,

wh i ch may lead to lack of differentiability of q . This occurs par-

ticularly when only a subset of the parameters is of interest.

4. EXTENSION OF OPTIMAL DESIGN Th EORY TO INPUT SIGNAL DESIGN IN
DYN AIIIC SYSTEMS.

In this section we illustrate how the results from Section 3

f ind appl icat ion in the j~j~y t - svn th e s is  problem in dynamic system

ident i f icat ion ,  as the engineers would describe it. A few typical

papers are summarized and re ference is made to other simi lar work.

A. Box and Jenkins (1976 , Appendix A 11.2)

The model considered here is a very simple Input-out put

relationship, but It brings out several important points .

y(t + 1) - a1y(t) b~u(t) + e(t)

where all variables are scalar , 1a 1 1 and { e ( t ) }  is white

Gaussian noise. (In th~ following, the engineering terminology will

be introduced more and more.) The parameters a 1 and b 1 are to be

• estimated.

• Box and Jenkins consider choosing input processes to maximize

the determinan t of the long -term Information ma trix, subject to con-

______________________________________________________ • ~~~~— -
~~~~~~ 

— - — 
~~~~~ .-~~~
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straints on the input. They consider constraints of the form

(i) c~~ fixed, (ii) fixed , (ill) fixed.

The solutions are that in cases (I) and (ii) first-order autoregres-

sions are optimal, whereas In case (iii) white noise Is best. Major

problems are that the parameters in the autoregressions depend on

• a1 and b 1. In the dynamic case , therefore , linearity of the model

in the parameters does not usually guarantee the possibility of

off-lIne design .

Similar problems are discussed by Ng et al. (1977) for higher -

• order autoregressions. As shown by Levin (1960) the optima l input

can be computed “off-line ” if the input -output relationshi p is a

moving average.

B. Zarrop, Payne and Goodwin (1975)

A more complicated stationary input—output representation

Is considered in this paper:

n n n
~ a1y(t-i) = E b~ u ( t — i )  + E c 1e(t - i)  . (10)

1=0 1=0 1=0

Each of y(t), u(t) and e(t) is considered to be a vector

(mult i - input-mult i -output) ,  the { e ( t ) )  are taken to be independent
normal (O,z), a0 and c0 are Identity matrices and the parame ters

of lnterest ,e , are the elements of (a 1.....a~ . b0.....b~ . ~~~~~~~~~~~
From the log -likelihood of an N-sam ple the Fisher information matr ix

Is computed. The asymptotic per observation information matri x is ex-

pressed in terms of the normalized spectral distribution function ,

of the input process and it can be written as

M(e ,F
~
) = constant + term “li near ” In dF

~
(.)

- • —

~ 

•~~~~~~ •- ~~~~ - -~~~~— - • -- -~~~~~~~•- -  -~~~~~~~~~~~~ • -~~~~~~~~~~ •
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The input spectral density takes the role of the design measure

in Section 3 and theorems exactly analogous to Theore ms I and 2 are

avai lable , although the proof of the latter Is not given In this

referenc e, but In Goodw in and Payne (1977) and Mehra (1974b, 1976a).

An important modification to Theorem 1 is the definit ion of t~e cx-

treme points of the design space , which Is now the range of frequen-

• d e s ( — v ,~~). The extreme points correspond to pure sine-wave Inputs

and Carath~odory ’s Theorem implies that , if 0 Is k-dimensional , an

optimal input process can be constructed as a linear comb ination of

at most .
~~ k(k + 1) sinusoids. This frequency-doma in approach

has a s tar t l ing advanta ge in that the desi gn-space is a finite inter-

val , although again the specific optimal frequencies and amplitudes

are 0-dependent. I’lehra (1976a) suggests substitutin g a prior estl-

mate 6
0
, and proposes a version of Algor ithm 1 for comput ing the

• optimal desi gn on (-i ,~~~~
) .

Other papers related directly to this problem are Payne et al .

(1975) and Viort (1972). The latter work seems to have been the first

attempt to investigate D-optimality in dynamic systems . In general ,

all these papers concentra te on D-optim al ity , although the basic

• theorems have much wider va lidi ty , as in Sect on 3.

C. Kev lcz ky ( 1975)

Keviczky considers a scalar (single -input —s ingle output) ver-

sion of (10), spec Ifically of the form

n m r

~ a1y(t—i) ~ b 1 u(t-I) + x E c1e(t—i )1=0 1=0 i”0
w h e r e  a0 

= C
0 

1, m ~ n , r ~ n. The errors are identical ly dis-

tributed and Gaussian , with zero means. He considers separately the
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case of {e(t)} uncorrelated and correlated and he works with fin-

itely many observations and there fore in the time-domain. As in B,

he constructs the Fisher information matrix, regarding as the k

parameters 0T = (bo~ • • •~
bm i ~~~~~~~~~ and, for the incorre lated

errors case , derives a recursion for the determinant of the covar-

lance matrix of the least-s quare s est imators of the parameters , from

• the N—observation case to that of N + 1. Using this , he is able to

choose u (N + 1) to maximize the increase in the D-optima lity cri-

terion subject to an amplitude constraint

—U ~ u(N + 1) ~ U

As often happens , it is optimal to take u (N + 1)~ = U.

When the errors are correlated , optima l design has to be based

on the information matrix , which involves the usual difficulty of

i gnorance about e

A summary of this approach is given by Goodwin and Payne (1977),

and recursive design is also described by Arimoto and Kimura (1971),

using a Bayesian Informatio n-theoretic viewpoint.

D. Mehra (1974b)

This paper reviews the field quite fully and discusses ex-

pli citly state-space models like (3). Controllability and observa-

bil ity are assume d and the identifiable form of the system given by

(4) — (6) is considered. As in B and C , the log-likelihood from

N observations is written down as

1(0) = constant - E ~v ’ (t ) v ( t )  + 2 1 E ( t ) I
t=1 ~.

wnere e denotes the set of k parameters. The Fisher Information

matrix related to , say, a sca l ar In p ut seq uenc e u~ — (u(1) ,.. .,u(N))

~~lI_ •~:~ —- • - - • - - - ~~- ____________________________ ________________________
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• can be evaluated , after some effort  (detai ls i n Meh ra , 1976b), and

it turns out tha t
• M( o ,~ ) a f w (o,~ (uN))~

(du N) + A(e) = W( o ,C) + A(o)
• UN

where F, is a measure on the space UN of all possible UN~ 
and

each element of W(e ,uN) is a quadratic form In UN. Typical input

const rai n ts, defining UN, are

(a) U
~
U N ~ 1 (energy~ con straint)

(b) f u(tfl ~ 1 , t = 1,...,N (amplitude constraints)

Again , D—optimal ity is considered and direct analogues of

Theorems 1 and 2, Algorithm 1 and the Bound (Mehra , 1976a) are pro-

vided.

In this special case ,

= tr{I(1(O , F , )W( e ,F,)} — ~~~~~~~~~~~~~~~~~~~

and the equiva lence theorem is given in terms of this. The formula-

tion given here follows Mehra (1976a , pp.230-249) more closely. In

Mehra (1974b) a prior distribution is assume d for 0 and results

given in terms of
• M(F,) E9M(e ,t)

Implementation of Algorithm 1 involves , at stage n , the choice

of a ~~~ e UN to maximize

tr (N (6 ,
~ fl

)W ( o ,
~

( u F,))) , (11)

and this itself Is a comp lex procedure . Criterion (11) is quadratic

In UN~ 
so In the bounded -energy case (a) we have an elgenfunction

probl em and in the linearly -constrained bounded-amplitude case (b) a

quad rat ic programming problem , whi ch results In a bang-bang Input; 

-~~~~~~~~~~~~~~ • • - - —



• 19.

t that Is , ju (t)I = 1, for each t.

Even when an optimal design on UN has been computed , It i s not
c lear how to apply it , being a probabil i ty measur e on the set of

N-stage inputs. Mehra (1974b) suggests some “concatenation ” In which
parts of the positively weighted (UN) (those In the support of the
design) are applied In turn.

In the stationary case , Mehra considers computation of long—term

optimal systems by frequency -domain analysis as in B above , point-

ing out the computationa l attractiveness related to the simple design

space ( - f l ,n). This approach is made possible by the possibility of

representing the equilibrium model in input -output terms as in (8) in

Section 2.

Mehra (1974b) indicates generaliza tions to continuous -time , non-

linear and distributed parameter systems and gives some continuous -

time ill ustrative examples. The only complica tion in the continuous -

time frequen cy-domain approach is that the design space of frequencies

is (— s. ,.).

E. Aoki and Staley (1970)

Al though this paper is more tenuously dependent on the work
of Section 3 , it is appropr iate to mention it now because it uses an
opt ima l ity cr iterion related to B above. The authors consider the

autor egr essive model
k
~ a . y ( t — i )  a u(t)  + e( t )  , t = 1,2,...

1=0 1

where the {e(t)} are independent N(0,a2), a0 1 and suitable initial

condi tions are specified. N observatIons have to be made to estimate

01 (a l,...,ak) and the criterion used is -

_______ ______
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-tr M(6 ,F,) (12)

where ~ Is a design on UN and H is the Fisher Information matr ix.

For this criterion , we can find an optimal design that Is degen-

• c rate , concentrated on one point in the design space , that is , on one

set of N inputs. In the bounded energy case, therefore , we mus t

max imi ze
tr(I( o ,uN ))

which turns out to be quadratic in uN~ 
subject to the quadratic con-

s train t U
~~

UN ~ 1. As in the treatment of (11) in 0 above , we must

so l ve an elgenprob lem.
• The continuous -time version of this problem expressed in state-

space terms has been examined by Mehra (1974a). Instead of N dis-

crete inputs , observat ions are made over a finite per iod (0,1). The

trace criterion (12) is used, and the energy constraint I s

T• J u(t ) u(t )dt  1

The optimal { u(t ) :  0 ~ t ~ 1) can again be regarded as an

eigenfunction . When there Is a scalar parameter the problem is of

Sturm-L iouvil le type and the equatio n sa t i s f ied  by the optimal input

can be regarded as a Fredhoim Integral equation. Various methods are

suggested for obtaining explicit solutions.

The trace criterion (12) (not the same as the usual one of

was also used by Nahi and Napj us (1971) and Lopez-Toledo

(1974). Its use was criticized by Zarrop and Goodwin (1975), with

rejoinder by Mehra (1975), on the grounds that the information matrices

;orresponding to the optimal desi gns are often singular , so that

identifiability problems may well arise. The corresponding trivial

_______  • 
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observat ion in the s ta t i c  design case is implicit in Silvey and

Titterington (1974).

F. ~~gorovcev (1971J, and Spr uill and Studden (19781

In these papers the influence of time is felt in a slightly

different way. In Dogorovcev the response function is

y(t) = oTu(t) + e(t) $ 0 ~ t ~ 1 (13)

where 0 and u(t), for each t, are k-vectors and (e(t)} Is a

stationary process with zero means and covariance kernel R(s ,t),

defining a reproducing kernel Hu bert space (RKHS) H(R), in the

sense of Parzen (1961). 0 is estimated by 8 , the best estimato r

linear In (y(t): 0 ~ t ~ 1) and optimal functions

{u(t): 0 ~ t ~ 1) are sought for trace optimal ity of cov (~) and

to minim i ze the variance of ~
Tê , for a specified vector c. An

orthogonal basis can be set up in H(R) and approximatel y normalized

members of this basis provide the optimal input functions.

Spruil l and Studden (1978) extend the work to more complex

res ponse s , dependent on a spatial variable ~ as well as t.

G. Miscellaneous pipers

In Mehra (1974a) it was not necessary to choose a design on

the class of input strategies because a degenerate design was opti-

mal . Such a search for an optima l input process leads to a more con—

ventional numerica l problem. The choice of inputs over the interval

(0,1), subject to some integral constraint, to minimize some tIme-

~ntegrated functional is a familiar extremal problem in control

engineering, leading to solutio n by variational methods or by the

theory of eigenfunctions. Such methods constitute what is sometime s
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called the optima l control approach.

• Mehra (1974a) falls into this category , as does his precursor

Levadl (1966). This author considered the continuous-t ime scalar

moving-av erage process

y(t) = b(t,t)u (t)dr + e( t )  , 0 ~ t ~ I

where the function b(.,’) contains k parameters , 0. An input

process {u(t): 0 ~ t ~ TI has to be chosen , subject to
fT

u2(t)cit = 1, to minimize tr I 1 (e ,u(.)), where I 1(.,.) denotes

the covariance matrix of the best linear estimator of a. The noise

may be correlated. In this movin g -avera ge example the optimal Input

is independent of 0, unlike most of the case s we have considere d ,

and the solution , which , like Do gor ovcev  (1971), Is based on the

RKHS formulation of Parzen (1961), i s  again an eigen funct ion satis-

fying a Fred~1olm integral equation.

In Goodwin (1971) a discrete—time nonlinear state—space system ,

invo lving k parameters o , coupled with a linear observation equa-

tion , is linearized. The performance-index to be minimized is the

sum of the more usual trace cr i ter ion (see Section 3) and a penalty

function to restrict the input choice. Uumerica l solution Is nec-

essary ; see also NahI and Wallis (1971).

The trace criterion has been used in single -input -single -output

input-output models by Coodwin , et al . (1973), Goodwin and Payne

(1973). Hami ltonian methods were used to compute optimal Inputs

wh i ch compared we ll with suboptima l strategies.

Other approaches have considered specific types of Input process

and tr ied to opt imize wi th in the appropriate c lass ;  see Van der Bos

(1967, 1973), Litman and Hugg lns (1963). 
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5. OPT IMAL CHOICE OF SAMPLING INSTANTS OR LOCAT IONS

Section 4 concentrated on the problem of choosing optimal input

processes. Here we consider how , given the Input processes for a

continuous-time system that can be sampled at discrete instants , the

sampling strategy should be designed. Three models are considered

below , corresponding to three groups of authors .

A. Sacks , Yl v isaker and Wahb a

These authors considered the response models similar to (13)

in Section 4F. Sacks and Ylvisaker (1966) looked at the scalar

parameter case, with

y(t) = Ou(t) + e ( t )  , 0 ~ t < 1

and they considered how t~ choose N distinct sampling times so as

to minimize the variance of the best linear estimator of 0. In

partic ular , they looked at what happened as N + and found that

asymptotically opti mal solutions existed , provided the error covar-

lance kernel R(s ,t) was non-smooth on s = t and provided u(t)

belonged to H (R). The optima l solutions were characterized but
• 

their explicit computation is difficult. In later papers (1968, 1970),

• they extended their work to the k-parameter case and relaxed the

• aforementioned condition on R (s,t).

Wahba (1971) related the problem to one of function approxima-

tion by splines and did more work on the computation of optimal Se—

quences of desi gns.

B. Goodwi n, tlehra and others

In a series of papers starting with Goodwin , et al. (1974),

linear state-space models of the following form were considered. 

~~
-
~~~~~~~
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dx(t) = Gx(t)dt + Hu(t)dt + F d e ( t )  ( 1 4 )

-• y ( t )  = Bx( t) + Cu( t ) $

with some initia l condItions , where 0 , the paramete r vector , is

made up of the unknowns in (G, H , B , C) and where {e(t)} is a

(multivariate) process with independent increments. Sampling time s

for N observations have to be chosen , which leads to the replace-

ment of (14) by an appropriately integrated discrete recursion . The

~
• Fisher information matrix is written dow n and the D-opt imalIty and

trace— optima lity criteria are considered. In Goodwin , et al . (1974)

and Payne, et al. (1975), where for N large the frequency-domain

approach is used , the improvement resulting from non—uniform sampling

intervals in a simple example and the simultaneous choice of sampling

frequency and input func tion , are discussed. The work is summarized

in Goodwin and Payne (1976, 1977, Section 6.5).

Mehra (1976b) considers a similar model to (14), with observation

equation

y (t) Bx( t ) + n( t ) , 0 ~ t ~ 1

where n(t) Is Gauss ian white noise. He considers the choice of

measurem ent time s not now from a parameter estimation point of view

but from one of state estimatio n . Instead of the Fisher information

matrix he considers P(t), the covariance matrix 0f the state vector ,

whose evolu tion is governed by the Kalman equations. In particular ,
— he would like to ~‘m lni mIz e ” P(1). However , PCi) Is hard to compute

expl ic i t ly in the cont inuous-t ime model , as a solution of a Riccati

equation and he opts for approximations that lead back to considera-

tion of criteria based on the Fisher information matrix. The paper

closely parallels fiehra (1974b), with results like Theorems 1 and 2

Lii. ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ —
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and a computational procedure on the lines of Al gorithm 1.

Ng and Goodwin (1976) consider the model

dx(t) Gx (t)dt + Fde(t)

y(t) = Bx(t)

where e(t) Is white Gaussian noise.

Using (O,~) as the design space , they represent a sampl ing

• 
• 

strategy as a design ~ on (O,~ ) with , as extreme points , the

uniform sampling rates. The appropriate Fisher informat ion matrix

satisfies Theorem 1, so that in a k-parameter problem an optImal

strategy can be achi c ed using at r~ost ~
. k(k + 1) sampling

rates.

As usual , explicit results depend on knowledge of 6 . Methods of

coping with I gnorance about 0 and of frequency -domain analysis

are described. They show that it is bet ter  to concatenate subexperi-

ments using pure sinusoids than to carry out a single experiment with

a multi -frequency input.

C. Se infeld and others

These authors are invo lved wi th such spatial problems as

the measurement of pollution and wi th the location of monitoring

stations. They are therefore obliged to look at distributed -parameter

systems and to construct spatial designs that are both ~xact (a gen-

eral design measure will not do) and non -repli cat ing .

With the pollution levels as state variables , the Kalman filter

equations are constructed and a criterion of “total integrated var-

i ance ” (integrated over time and space) is computed , using the

Ricc ati equation for the state covariance matri x P(t,~ ). Heav y

numer i cal wor k i s necessar y for opti mal cho i ce o f, say , N locations.

- - - - -~~~- - ~~~~~~~~~--~~~---~~~~~~~- • • --



- - - -

26.

In Yu and Seinfeld (1973) sequentIa l choice is suggested; see also

Chen and Seinfeld (1975), Seinfeld (1976).

6. CLOSING REMARKS

The problem of optimal experimental design Is clearly importa nt

in models where time is an inevitable component. It Is pleasing that

the Kiefer-Wol fowit: work In static models carries over automatically

to many dynamic problems in which the underlying design space can be

a class of input processes (time— domain analysis), a range of fre-

quencies (frequency-domain) or a range of sampling rates (sampling

stra tegies).

Although the publ ish ed theory does not go far beyond 0-optimal-

Ity or trace-opt ima llty , general criteria could be considered , as i n
Section 3. There is not much wr i t ten about 0~ -opt imalIty and its

counterpar ts ,  in which only s of the k parameters are of Interest ,

although again th~ s would not involve any extra fundamental Ideas.

Goodwin and Payne (1977) mention it in the context of model discrimin-

ation , drawing analogy with work of Atkinson and Cox (1974) and

Atkinson and Fedorov (1975a, 1975b). The latter two papers bear some

resemblan ce to a paper by Gag li ard l (1967), who considers a special

model choice problem involving a finite parameter space. His methods

are generalized by Kuszta and Slnha (1976 , 1977, 1978).

These are some areas where further develo pment is desirable.

Another is the consideration of mo re examples , i n par ti cular less
simple ones than at presen t reported , altnough they are likely to In-

volve hard computational work because of the almost inevitable depen-

dence of the Informa tion matrix on the parameter values. Any advances

in the numerical aspects of these problems would be very valuable.

~~~IIPi__ - - 
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